Published in

Astronomy & Astrophysics, (612), p. A58, 2018

DOI: 10.1051/0004-6361/201732266

Links

Tools

Export citation

Search in Google Scholar

Spotting high-z molecular absorbers using neutral carbon

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

While molecular quasar absorption systems provide unique probes of the physical and chemical properties of the gas as well as original constraints on fundamental physics and cosmology, their detection remains challenging. Here we present the results from a complete survey for molecular gas in thirty-nine absorption systems selected solely upon the detection of neutral carbon lines in Sloan Digital Sky Survey (SDSS) spectra, without any prior knowledge of the atomic or molecular gas content. H2 is found in all twelve systems (including seven new detections) where the corresponding lines are covered by the instrument setups and measured to have logN(H2) ≳ 18, indicating a self-shielded regime. We also report seven CO detections (7/39) down to logN(CO) ~ 13.5, including a new one, and put stringent constraints on N(CO) for the remaining 32 systems. N(CO) and N(C I) are found to be strongly correlated with N(CO)/N(C I) ~ 1/10. This suggests that the C I-selected absorber population is probing gas deeper than the H I–H2 transition in which a substantial fraction of the total hydrogen in the cloud is in the form of H2. We conclude that targeting C I-bearing absorbers is a very efficient way to find high-metallicity molecular absorbers. However, probing the molecular content in lower-metallicity regimes as well as high-column-density neutral gas remains to be undertaken to unravel the processes of gas conversion in normal high-z galaxies.

Beta version