Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S337(13), p. 291-294, 2017
DOI: 10.1017/s1743921317010006
Full text: Unavailable
AbstractAn evolution of the low-frequency pulse profile of PSR B2217+47 is observed during a six-year observing campaign with the LOFAR telescope at 150 MHz. The evolution is manifested as a new component in the profile trailing the main peak. The leading part of the profile, including a newly-observed weak component, is steady during the campaign. The transient component is not visible in simultaneous observations at 1500 MHz using the Lovell telescope, implying a chromatic effect. A variation in the dispersion measure of the source is detected in the same timespan. Precession of the pulsar and changes in the magnetosphere are investigated to explain the profile evolution. However, the listed properties favour a model based on turbulence in the interstellar medium (ISM). This interpretation is confirmed by a strong correlation between the intensity of the transient component and main peak in single pulses. Since PSR B2217+47 is the fourth brightest pulsar visible to LOFAR, we speculate that ISM-induced pulse profile evolution might be relatively common but subtle and that SKA-Low will detect many similar examples. In this scenario, similar studies of pulse profile evolution could be used in parallel with scintillation arcs to characterize the properties of the ISM.