Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S319(11), p. 11-11, 2015

DOI: 10.1017/s1743921315009862

Links

Tools

Export citation

Search in Google Scholar

Wide-Field Slitless Spectroscopy with JWST's NIRISS

Journal article published in 2015 by William V. Dixon, Swara Ravindranath, Chris J. Willott ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Near Infrared Imager and Slitless Spectrograph (NIRISS) aboard the James Webb Space Telescope (JWST) will offer wide-field slitless spectroscopy (WFSS) with a resolving power R = 150 at wavelengths from 0.8 to 2.25 microns. In this band, NIRISS will be sensitive to Lyman α emission lines and continuum breaks in the spectra of galaxies with redshifts 6 < z < 17, allowing it to probe the first stars and ionizing sources in the early universe. NIRISS observations of the high-redshift universe will provide a wealth of information on foreground objects, creating a unique library of optical emission-line spectra from the faintest galaxies at lower redshifts. To explore its ability to identify and characterize galaxies at all redshifts, we have modeled a NIRISS observation of a massive strong-lensing galaxy cluster and analyzed the synthetic images using standard software tools. Our simulations demonstrate that WFSS with NIRISS will provide a powerful tool for the exploration of galaxies near and far.

Beta version