Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S262(5), p. 127-130, 2009
DOI: 10.1017/s1743921310002644
Full text: Unavailable
AbstractWe describe the methodology required for estimation of photometric estimates of metallicity based on the SDSS gri passbands, which can be used to probe the properties of main-sequence stars beyond ~10 kpc, complementing studies of nearby stars from more metallicity-sensitive color indices that involve the u passband. As a first application of this approach, we determine photometric metal abundance estimates for individual main-sequence stars in the Virgo Overdensity, which covers almost 1000 deg2 on the sky, based on a calibration of the metallicity sensitivity of stellar isochrones in the gri filter passbands using field stars with well-determined spectroscopic metal abundances. Despite the low precision of the method for individual stars, internal errors of σ[Fe/H]~0.1 dex can be achieved for bulk stellar populations. The global metal abundance of the Virgo Overdensity determined in this way is 〈[Fe/H]〉 = −2.0±0.1 (internal) ±0.5 (systematic), from photometric measurements of 0.7 million stars with heliocentric distances from ~10 kpc to ~20 kpc. A preliminary metallicity map, based on results for 2.9 million stars in the northern SDSS DR-7 footprint, exhibits a shift to lower metallicities as one proceeds from the inner- to the outer-halo population, consistent with recent interpretation of the kinematics of local samples of stars with spectroscopically available metallicity estimates and full space motions.