We undertook a critical investigation of a common estimator of the dust covering factor in active galactic nuclei (AGN). The infrared radiation emitted by the obscuring dusty structure ("the dusty torus") is nothing but a reprocessed fraction of the accretion disk emission, so the ratio of their luminosities (L_torus /L_AGN) should correspond to the fraction of the AGN sky obscured by dust. Using state-of-the-art Monte Carlo radiative transfer code, we calculated a grid of spectral energy distributions (SEDs) emitted by the clumpy two-phase dusty structure. Using this grid of SEDs, we studied the relation between L_torus /L_AGN and the dust covering factor for different parameters of the torus. We found that in case of type 1 AGNs, due to the torus anisotropy, L_torus/L AGN underestimate low covering factors and overestimate high covering factors. In type 2 AGNs covering factors are always underestimated. Our results provide a novel easy-to-use method to account for anisotropy and obtain correct covering factors. Using two samples from the literature, we demonstrated the importance of these effects for inferring the obscured AGN fraction. We found that after the anisotropy is properly accounted for, the dust covering factors show very weak dependence on L_AGN, with values in the range of approx. 0.6 − 0.7. Our results suggest a higher fraction of obscured AGNs at high luminosities than those found by X-ray surveys. We discuss the possible causes of this discrepancy and demonstrate that it is partially due to the presence of a Compton-thick AGN population, which is missed by X-ray surveys, but not by infrared.