Published in

Astronomy & Astrophysics, (629), p. A93, 2019

DOI: 10.1051/0004-6361/201936029

Links

Tools

Export citation

Search in Google Scholar

Chemical evolution of elliptical galaxies with a variable IMF

Journal article published in 2019 by Zhiqiang Yan ORCID, Tereza Jerabkova ORCID, Pavel Kroupa ORCID, Alejandro Vazdekis ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Growing evidence in recent years suggests a systematic variation of the stellar initial mass function (IMF), being top-heavy for starburst galaxies and possibly bottom-heavy for massive ellipticals. Galaxy chemical evolution simulations adopting an invariant canonical IMF face difficulty in simultaneously reproducing the metallicity and α-enhancement of the massive elliptical galaxies. Applying a variable IMF that changes with time is a promising solution, however, it is non-trivial to couple a variable IMF theory with the existing galaxy evolution codes. Here we present the first open source simulation code which recalculates the galaxy-wide IMF at each time step according to the integrated galactic IMF (IGIMF) theory where the galaxy-wide IMF depends on the galactic star formation rate and metallicity. The resulting galaxy-wide IMF and metal abundance evolve with time. With this pilot work, we explore the effect of the IGIMF theory on galaxy chemical evolution in comparison with an invariant IMF.

Beta version