Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S313(10), p. 58-63, 2014

DOI: 10.1017/s1743921315001878

Links

Tools

Export citation

Search in Google Scholar

Multi-wavelength selection and identification of gamma-ray blazar candidates

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA significant fraction (~ 30%) of the gamma-ray sources detected by the Fermi Gamma-ray Space Telescope is still of unknown origin, being not yet associated with counterparts at lower energies. Many unidentified gamma-ray sources (UGSs) could be blazars, the largest identified population of extragalactic gamma-ray sources and the rarest class of active galactic nuclei. In particular, it has been found that blazars occupy a defined region in WISE three dimensional color space, well separated from that occupied by other sources in which thermal emission prevails. For farther sources with weaker IR emission, additional informations can be obtained combining WISE data with X-ray or radio emission. Alternatively, the low-frequency radio emission can be used for identifying potential gamma-ray candidate blazars. However, optical spectroscopic observations represent the tell-tale tool to confirm the exact nature of these sources. To this end, an extensive observational campaign has been performed with several optical telescopes, aimed at pinpointing the exact nature of gamma-ray candidate blazars selected with the different selection methods mentioned above. The results of this campaign lead to the discovery of 60 new gamma-ray blazars, thus confirming the effectiveness of these selection criteria.

Beta version