Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S268(5), p. 483-488, 2009

DOI: 10.1017/s1743921310004667

Links

Tools

Export citation

Search in Google Scholar

Beryllium abundances and the formation of the halo and the thick disk

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe single stable isotope of beryllium is a pure product of cosmic-ray spallation in the ISM. Assuming that the cosmic-rays are globally transported across the Galaxy, the beryllium production should be a widespread process and its abundance should be roughly homogeneous in the early-Galaxy at a given time. Thus, it could be useful as a tracer of time. In an investigation of the use of Be as a cosmochronometer and of its evolution in the Galaxy, we found evidence that in a log(Be/H) vs. [α/Fe] diagram the halo stars separate into two components. One is consistent with predictions of evolutionary models while the other is chemically indistinguishable from the thick-disk stars. This is interpreted as a difference in the star formation history of the two components and suggests that the local halo is not a single uniform population where a clear age-metallicity relation can be defined. We also found evidence that the star formation rate was lower in the outer regions of the thick disk, pointing towards an inside-out formation.

Beta version