Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2019

DOI: 10.1093/mnras/stz3081

Links

Tools

Export citation

Search in Google Scholar

Discovery of a nearby 1700 km/s star ejected from the Milky Way by Sgr A*

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present the serendipitous discovery of the fastest Main Sequence hyper-velocity star (HVS) by the Southern Stellar Stream Spectroscopic Survey (S5). The star S5-HVS1 is a ∼2.35 M⊙ A-type star located at a distance of ∼9 kpc from the Sun and has a heliocentric radial velocity of 1017 ± 2.7 km s−1 without any signature of velocity variability. The current 3-D velocity of the star in the Galactic frame is 1755 ± 50 km s−1. When integrated backwards in time, the orbit of the star points unambiguously to the Galactic Centre, implying that S5-HVS1 was kicked away from Sgr A* with a velocity of ∼1800 km s−1 and travelled for 4.8 Myr to its current location. This is so far the only HVS confidently associated with the Galactic Centre. S5-HVS1 is also the first hyper-velocity star to provide constraints on the geometry and kinematics of the Galaxy, such as the Solar motion Vy, ⊙ = 246.1 ± 5.3 km s−1 or position R0 = 8.12 ± 0.23 kpc. The ejection trajectory and transit time of S5-HVS1 coincide with the orbital plane and age of the annular disk of young stars at the Galactic centre, and thus may be linked to its formation. With the S5-HVS1 ejection velocity being almost twice the velocity of other hyper-velocity stars previously associated with the Galactic Centre, we question whether they have been generated by the same mechanism or whether the ejection velocity distribution has been constant over time.

Beta version