Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S279(7), p. 122-125, 2011

DOI: 10.1017/s1743921312012793

Links

Tools

Export citation

Search in Google Scholar

H and He in stripped-envelope SNe – how much can be hidden?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractH and He features in photospheric spectra have rarely been used to constrain the structure of Type IIb/Ib/Ic supernovae (SNe IIb/Ib/Ic). The lines have to be modelled with a detailed non-local-thermodynamic-equilibrium (NLTE) treatment, including effects uncommon in stars. Once this is done, however, one obtains valuable hints on the characteristics of progenitors and explosions (composition, explosion energy, . . .). We have extended a radiative transfer code to compute synthetic spectra of SNe IIb, Ib and Ic. Here, we discuss our first larger set of models, focusing on the question: How much H/He can be hidden (i.e. remain undetected in photospheric spectra) in SNe Ib/Ic? For the SNe studied (relatively low Mej = 1. . .3 M), we find a limit of MHe ≲ 0.1 M in SNe Ic (no unambiguous He lines). Stellar evolution models for single stars normally always yield higher masses. We suggest that low- or moderate-mass SNe Ic result from efficient envelope stripping in binaries. We propose similar studies on H/He in high-mass and extremely aspherical SNe, and observations covering the region of He I λ 20581.

Beta version