Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S265(5), p. 75-76, 2009

DOI: 10.1017/s1743921310000244

Astronomy & Astrophysics, (522), p. A26, 2010

DOI: 10.1051/0004-6361/200913282

Links

Tools

Export citation

Search in Google Scholar

The metal–poor end of the Spite plateau

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present the largest sample available to date of lithium abundances in extremely metal poor (EMP) Halo dwarfs. Four Teff estimators are used, including IRFM and Hα wings fitting against 3D hydrodynamical synthetic profiles. Lithium abundances are computed by means of 1D and 3D-hydrodynamical NLTE computations. Below [Fe/H]~−3, a strong positive correlation of A(Li) with [Fe/H] appears, not influenced by the choice of the Teff estimator. A linear fit finds a slope of about 0.30 dex in A(Li) per dex in [Fe/H], significant to 2–3 σ, and consistent within 1 σ among all the Teff estimators. The scatter in A(Li) increases significantly below [Fe/H]~−3. Above, the plateau lies at 〈A(Li)3D, NLTE〉 = 2.199 ± 0.086. If the primordial A(Li) is the one derived from standard Big Bang Nucleosynthesis (BBN), it appears difficult to envision a single depletion phenomenon producing a thin, metallicity independent plateau above [Fe/H] = −2.8, and a highly scattered, metallicity dependent distribution below.

Beta version