Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S275(6), p. 250-254, 2010

DOI: 10.1017/s1743921310016108

Links

Tools

Export citation

Search in Google Scholar

Fitting along the Fundamental Plane: New comparisons of jet physics across the black hole mass scale

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCorrelations between the radio and X-ray bands in the hard state of black hole X-ray binaries (BHBs) have led to the discovery of the Fundamental Plane of black hole accretion, linking accretion-driven radiative attributes to black hole mass. Although this discovery has led to new constraints on radiative efficiencies, there is still significant degeneracy in terms of understanding the governing physics. I present several new results exploring the processes driving the Fundamental Plane over the black hole mass range. These include the first ever homogeneous fits of sources at approximately the same Eddington luminosity but millions of times different in mass, which I focus on for this proceeding article.

Beta version