Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, A29A(11), p. 295-296, 2015

DOI: 10.1017/s1743921316003082

Links

Tools

Export citation

Search in Google Scholar

K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWith the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5 e V, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6 e V resolution shows that the analysis of spectra taken at ECS resolution allows to determine the transition energies of the strongest components.

Beta version