Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S308(11), p. 143-148, 2014
DOI: 10.1017/s1743921316009753
Full text: Unavailable
AbstractOur view of the low-redshift Cosmic Web has been revolutionized by galaxy redshift surveys such as 6dFGS, SDSS and 2MRS. However, the trade-off between depth and angular coverage limits a systematic three-dimensional account of the entire sky beyond the Local Volume (z< 0.05). In order to reliably map the Universe to cosmologically significant depths over the full celestial sphere, one must draw on multiwavelength datasets and state-of-the-art photometric redshift techniques. We have undertaken a dedicated program of cross-matching the largest photometric all-sky surveys – 2MASS, WISE and SuperCOSMOS – to obtain accurate redshift estimates of millions of galaxies. The first outcome of these efforts – the 2MASS Photometric Redshift catalog (2MPZ, Bilickiet al. 2014a) – has been publicly released and includes almost 1 million galaxies with a mean redshift ofz=0.08. Here we summarize how this catalog was constructed and how using the WISE mid-infrared sample together with SuperCOSMOS optical data allows us to push to redshift shells ofz∼ 0.2 –0.3 on unprecedented angular scales. Our catalogs, with ∼ 20 million sources in total, provide access to cosmological volumes crucial for studies of local galaxy flows (clustering dipole, bulk flow) and cross-correlations with the cosmic microwave background such as the integrated Sachs-Wolfe effect or lensing studies.