Published in

Astronomy & Astrophysics, (632), p. A102, 2019

DOI: 10.1051/0004-6361/201936010

Links

Tools

Export citation

Search in Google Scholar

Analysis of the H.E.S.S. public data release with ctools

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The ctools open-source software package was developed for the scientific analysis of astronomical data from Imaging Air Cherenkov Telescopes (IACTs), such as H.E.S.S., VERITAS, MAGIC, and the future Cherenkov Telescope Array (CTA). To date, the software has been mainly tested using simulated CTA data; however, upon the public release of a small set of H.E.S.S. observations of the Crab nebula, MSH 15–52, RX J1713.7–3946, and PKS 2155–304 validation using real data is now possible. We analysed the data of the H.E.S.S. public data release using ctools version 1.6 and compared our results to those published by the H.E.S.S. Collaboration for the respective sources. We developed a parametric background model that satisfactorily describes the expected background rate as a function of reconstructed energy and direction for each observation. We used that model, and tested all analysis methods that are supported by ctools, including novel unbinned and joint or stacked binned analyses of the measured event energies and reconstructed directions, and classical On-Off analysis methods that are comparable to those used by the H.E.S.S. Collaboration. For all analysis methods, we found a good agreement between the ctools results and the H.E.S.S. Collaboration publications considering that they are not always directly comparable due to differences in the datatsets and event processing software. We also performed a joint analysis of H.E.S.S. and Fermi-LAT data of the Crab nebula, illustrating the multi-wavelength capacity of ctools. The joint Crab nebula spectrum is compatible with published literature values within the systematic uncertainties. We conclude that the ctools software is mature for the analysis of data from existing IACTs, as well as from the upcoming CTA.

Beta version