Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S255(4), p. 189-193, 2008
DOI: 10.1017/s1743921308024800
Full text: Unavailable
AbstractThe first metal enrichment in the universe was made by supernova (SN) explosions of population (Pop) III stars. The history of chemical evolution is recorded in abundance patterns of extremely metal-poor (EMP) stars. We investigate the properties of nucleosynthesis in Pop III SNe by comparing their yields with the abundance patterns of the EMP stars. We focus on (1) jet-induced SNe with various properties of the jets, especially energy deposition rates [Ėdep = (0.3 − 1500) × 1051 ergs s−1], and (2) SNe of stars with various main-sequence masses (Mms = 13 − 50M⊙) and explosion energies [E = (1 − 40) × 1051ergs]. The varieties of Pop III SNe can explain the observations of the EMP stars: (1) higher [C/Fe] for lower [Fe/H] and (2) trends of abundance ratios [X/Fe] against [Fe/H].