Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S329(12), p. 451-451, 2016

DOI: 10.1017/s174392131700254x

Links

Tools

Export citation

Search in Google Scholar

Core-Collapse Supernovae in the Early Universe: Radiation Hydrodynamics Simulations of Multicolor Light Curves

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe properties of the first generation of stars and their supernova (SN) explosions remain unknown due to the lack of their actual observations. Pop III stars may have been very massive and predicted to be exploded as pair-instability SNe, but the observed metal-poor stars show the abundance patterns which are more consistent with yields of core-collapse SNe. We study the multicolor light curves for a metal-free core-collapse SN models (massive stars of 25-100 solar mass range) to determine the indicators for the detection and identification of first generation SNe. We use mixing-fallback supernova explosion models which explain the observed abundance patterns of metal poor stars. Numerical calculations of the multicolor light curves are performed using the multigroup radiation hydrodynamic code STELLA. The calculated light curves of metal-free SNe are compared with our calculations of non-zero metallicity models and observed SNe.

Beta version