Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(492), p. 2709-2721, 2020

DOI: 10.1093/mnras/stz3616

Links

Tools

Export citation

Search in Google Scholar

A study of the physical properties of SB2s with both the visual and spectroscopic orbits

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The study of a selected set of 69 double-lined spectroscopic binaries (SB2) with well-defined visual and spectroscopic orbits was carried out. The orbital parallax, the mass, the colour, and the luminosity of each component were derived from observational data for almost all of these systems. We have also obtained an independent estimation of the component masses by comparing the colour–magnitude diagram (CMD) to the stellar evolution tracks reported by Pietrinferni. Nearly all of the observational points on the CMD are located between two tracks of slightly different mass or which fall very close to the one corresponding to a unique mass value. The masses obtained from the stellar model are in good agreement with their empirical values determined by parallax techniques (orbital, Gaia, and dynamical). This means that our adopted model is rather reliable and can therefore be used to infer further information, such as the age of each component in the studied systems. Our results indicate a fair correspondence between the age of primaries and secondary stars within 3σ. Nevertheless, we caution that these age indications suffer of uncertainties due to both inhomogeneities/low precision of the adopted photometric data and possible systematics. Finally, it is statistically shown that along with the orbital and trigonometric parallaxes, the dynamical parallax can serve as a reliable tool for distance estimates.

Beta version