Published in

American Association for the Advancement of Science, Science, 6430(363), p. 968-971, 2019

DOI: 10.1126/science.aau8815

Links

Tools

Export citation

Search in Google Scholar

Compact radio emission indicates a structured jet was produced by a binary neutron star merger

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The binary neutron star merger event GW170817 was detected through both electromagnetic radiation and gravitational waves. Its afterglow emission may have been produced by either a narrow relativistic jet or an isotropic outflow. High-spatial-resolution measurements of the source size and displacement can discriminate between these scenarios. We present very-long-baseline interferometry observations, performed 207.4 days after the merger by using a global network of 32 radio telescopes. The apparent source size is constrained to be smaller than 2.5 milli–arc seconds at the 90% confidence level. This excludes the isotropic outflow scenario, which would have produced a larger apparent size, indicating that GW170817 produced a structured relativistic jet. Our rate calculations show that at least 10% of neutron star mergers produce such a jet.

Beta version