Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S263(5), p. 131-140, 2009

DOI: 10.1017/s1743921310001638

Links

Tools

Export citation

Search in Google Scholar

Effect of the tensile strength on the stability against rotational breakup of icy bodies

Journal article published in 2009 by Imre Toth, Carey M. Lisse ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractFocusing on primitive icy minor bodies in the solar system like cometary nuclei, centaurs, transneptunian objects (TNOs), and main-belt comets (MBCs) we investigate the stability of these objects against rotational breakup by comparing their location in (radius – rotational period) space with respect to separation lines of the stable and breakup zones in this plane. We estimate the bulk tensile strength according to new structural and elasto-mechanical models of grain-aggregates, using these tensile strengths to compute separation lines. We note that the process of grain coagulation and growth is highly uncertain in the field of solar system formation and we simply don't know how to grow interstellar grains to aggregates larger than about 1 mm but we apply in our calculations the recently available elasto-mechanical models of grain-aggregates. Accorging to this study most of the observed comets, centaurs, TNOs, and MBCs are stable against rotational breakup, with a few notable exceptions. E.g., we suggest that the rotational fission is a likely scenario for the Haumea-family in the Kuiper belt.

Beta version