Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S285(7), p. 165-170, 2011

DOI: 10.1017/s1743921312000531

Links

Tools

Export citation

Search in Google Scholar

Technical and Observational Challenges for Future Time-Domain Surveys

Journal article published in 2011 by Joshua S. Bloom ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBy the end of the last decade, robotic telescopes were established as effective alternatives to the traditional role of astronomer in planning, conducting and reducing time-domain observations. By the end of this decade, machines will play a much more central role in the discovery and classification of time-domain events observed by such robots. While this abstraction of humans away from the real-time loop (and the nightly slog of the nominal scientific process) is inevitable, just how we will get there as a community is uncertain. I discuss the importance of machine learning in astronomy today, and project where we might consider heading in the future. I will also touch on the role of people and organisations in shaping and maximising the scientific returns of the coming data deluge.

Beta version