Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S237(2), p. 488-488, 2006
DOI: 10.1017/s1743921307002761
Full text: Unavailable
Our goal is to study relatively quiescent dense gas cores, isolated from disruptive stars, to understand the initial conditions of massive star formation. Determining their mass, size, dynamical status, and core mass distribution is a starting point to understand the mechanisms for formation, collapse, and the origin of their IMF. We obtained CSO 350 μm, images of quiescent regions in Orion and detected 51 resolved or nearly resolved molecular cores with masses ranging from 0.1 M to 46 M (Li et al. 2006). The mean mass is 9.8 M, which is one order of magnitude higher than that of the resolved cores in low mass star forming regions, such as Taurus. Our sample includes largely thermally unstable cores, which implies that the cores are supported neither by thermal pressure nor by turbulence, and are probably supercritical. They are likely precursors of protostars.