Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(490), p. 5424-5439, 2019
Full text: Unavailable
ABSTRACT Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments, the volume and rate of data acquisition have grown exponentially. This development necessitates a focus on artificial intelligence (AI) technologies that can mine large astronomical data sets. Automatic pulsar candidate identification (APCI) can be considered as a task determining potential candidates for further investigation and eliminating the noise of radio-frequency interference and other non-pulsar signals. As reported in the existing literature, AI techniques, especially convolutional neural network (CNN)-based techniques, have been adopted for APCI. However, it is challenging to enhance the performance of CNN-based pulsar identification because only an extremely limited number of real pulsar samples exist, which results in a crucial class imbalance problem. To address these problems, we propose a framework that combines a deep convolution generative adversarial network (DCGAN) with a support vector machine (SVM). The DCGAN is used as a sample generation and feature learning model, and the SVM is adopted as the classifier for predicting the label of a candidate at the inference stage. The proposed framework is a novel technique, which not only can solve the class imbalance problem but also can learn the discriminative feature representations of pulsar candidates instead of computing hand-crafted features in the pre-processing steps. The proposed method can enhance the accuracy of the APCI, and the computer experiments performed on two pulsar data sets verified the effectiveness and efficiency of the proposed method.