Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 3(490), p. 3309-3328, 2019

DOI: 10.1093/mnras/stz2615

Links

Tools

Export citation

Search in Google Scholar

Red and dead CANDELS: massive passive galaxies at the dawn of the Universe

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We search the five CANDELS fields (COSMOS, EGS, GOODS-North, GOODS-South, and UDS) for passively evolving a.k.a. ‘red and dead’ massive galaxies in the first 2 Gyr after the big bang, integrating and updating the work on GOODS-South presented in a previous paper. We perform SED-fitting on photometric data, with top-hat star-formation histories to model an early and abrupt quenching, and using a probabilistic approach to select only robust candidates. Using libraries without (with) spectral lines emission, starting from a total of more than 20 000 z > 3 sources we end up with 102 (40) candidates, including one at z = 6.7. This implies a minimal number density of 1.73 ± 0.17 × 10−5 (6.69 ± 1.08 × 10−6) Mpc−3 for 3 < z < 5; applying a correction factor to account for incompleteness yields 2.30 ± 0.20 × 10−5. We compare these values with those from five recent hydrodynamical cosmological simulations, finding a reasonable agreement at z < 4; tensions arise at earlier epochs. Finally, we use the star-formation histories from the best-fitting models to estimate the contribution of the high-redshift passive galaxies to the global star formation rate density during their phase of activity, finding that they account for ∼5–10 per cent of the total star formation at 3 < z < 8, despite being only $∼ 0.5{{\ \rm per\ cent}}$ of the total in number. The resulting picture is that early and strong star formation activity, building massive galaxies on short time-scales and followed by a quick and abrupt quenching, is a rare but crucial phenomenon in the early Universe: the evolution of the cosmos must be heavily influenced by the short but powerful activity of these pristine monsters.

Beta version