Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 36(115), p. 8872-8877, 2018

DOI: 10.1073/pnas.1717196115

Links

Tools

Export citation

Search in Google Scholar

Hack weeks as a model for data science education and collaboration

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Across many scientific disciplines, methods for recording, storing, and analyzing data are rapidly increasing in complexity. Skillfully using data science tools that manage this complexity requires training in new programming languages and frameworks as well as immersion in new modes of interaction that foster data sharing, collaborative software development, and exchange across disciplines. Learning these skills from traditional university curricula can be challenging because most courses are not designed to evolve on time scales that can keep pace with rapidly shifting data science methods. Here, we present the concept of a hack week as an effective model offering opportunities for networking and community building, education in state-of-the-art data science methods, and immersion in collaborative project work. We find that hack weeks are successful at cultivating collaboration and facilitating the exchange of knowledge. Participants self-report that these events help them in both their day-to-day research as well as their careers. Based on our results, we conclude that hack weeks present an effective, easy-to-implement, fairly low-cost tool to positively impact data analysis literacy in academic disciplines, foster collaboration, and cultivate best practices.

Beta version