Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 3(488), p. 4271-4287, 2019

DOI: 10.1093/mnras/stz1937

Links

Tools

Export citation

Search in Google Scholar

The first power spectrum limit on the 21-cm signal of neutral hydrogen during the Cosmic Dawn at z = 20–25 from LOFAR

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Observations of the redshifted 21-cm hyperfine line of neutral hydrogen from early phases of the Universe such as Cosmic Dawn and the Epoch of Reionization promise to open a new window onto the early formation of stars and galaxies. We present the first upper limits on the power spectrum of redshifted 21-cm brightness temperature fluctuations in the redshift range z = 19.8–25.2 (54–68 MHz frequency range) using 14 h of data obtained with the LOFAR-Low Band Antenna (LBA) array. We also demonstrate the application of a multiple pointing calibration technique to calibrate the LOFAR-LBA dual-pointing observations centred on the North Celestial Pole and the radio galaxy 3C220.3. We observe an unexplained excess of $∼ 30\!-\!50{{\ \rm per\ cent}}$ in Stokes / noise compared to Stokes V for the two observed fields, which decorrelates on ≳12 s and might have a physical origin. We show that enforcing smoothness of gain errors along frequency direction during calibration reduces the additional variance in Stokes I compared Stokes V introduced by the calibration on sub-band level. After subtraction of smooth foregrounds, we achieve a 2σ upper limit on the 21-cm power spectrum of $Δ _{21}^2 \lt (14561\, \text{mK})^2$ at $k∼ 0.038\, h\, \text{cMpc}^{-1}$ and $Δ _{21}^2 \lt (14886\, \text{mK})^2$ at $k∼ 0.038 \, h\, \text{cMpc}^{-1}$ for the 3C220 and NCP fields respectively and both upper limits are consistent with each other. The upper limits for the two fields are still dominated by systematics on most k modes.

Beta version