Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(490), p. 4648-4665, 2019

DOI: 10.1093/mnras/stz2820

Links

Tools

Export citation

Search in Google Scholar

H α morphologies of star clusters: a LEGUS study of H ii region evolution time-scales and stochasticity in low-mass clusters

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The morphology of H ii regions around young star clusters provides insight into the time-scales and physical processes that clear a cluster’s natal gas. We study ∼700 young clusters (≤10 Myr) in three nearby spiral galaxies (NGC 7793, NGC 4395, and NGC 1313) using Hubble Space Telescope (HST) imaging from LEGUS (Legacy ExtraGalactic Ultraviolet Survey). Clusters are classified by their H α morphology (concentrated, partially exposed, no-emission) and whether they have neighbouring clusters (which could affect the clearing time-scales). Through visual inspection of the HST images, and analysis of ages, reddenings, and stellar masses from spectral energy distributions fitting, together with the (U− B), (V − I) colours, we find (1) the median ages indicate a progression from concentrated (∼3 Myr), to partially exposed (∼4 Myr), to no H α emission (>5 Myr), consistent with the expected temporal evolution of H ii regions and previous results. However, (2) similarities in the age distributions for clusters with concentrated and partially exposed H α morphologies imply a short time-scale for gas clearing (≲1 Myr). Also, (3) our cluster sample’s median mass is ∼1000 M⊙, and a significant fraction ($∼ 20{{\ \rm per\ cent}}$) contain one or more bright red sources (presumably supergiants), which can mimic reddening effects. Finally, (4) the median E(B − V) values for clusters with concentrated H α and those without H α emission appear to be more similar than expected (∼0.18 versus ∼0.14, respectively), but when accounting for stochastic effects, clusters without H α emission are less reddened. To mitigate stochastic effects, we experiment with synthesizing more massive clusters by stacking fluxes of clusters within each H α morphological class. Composite isolated clusters also reveal a colour and age progression for H α morphological classes, consistent with analysis of the individual clusters.

Beta version