Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S321(11), p. 208-210, 2016

DOI: 10.1017/s1743921316008863

Links

Tools

Export citation

Search in Google Scholar

Gas accretion from the cosmic web feeding disk galaxies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDisk galaxies in cosmological numerical simulations grow by accreting gas from the cosmic web. This gas reaches the external disk, and then spirals in dragged along by tidal forces and/or disk instabilities. The importance of gas infall is as clear from numerical simulations as it is obscure to observations. Extremely metal poor (XMP) galaxies seem to be the best example we have of the gas accretion process at work. They have large off-center starbursts which show significant metallicity drop compared with the host galaxy. This observation is naturally explained as a gas accretion event caught in the act. We present preliminary results of the kinematical properties of the metal poor starbursts in XMPs, which suggest that the starbursts are kinematically decoupled entities within the host galaxy.

Beta version