Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(489), p. 1110-1119, 2019

DOI: 10.1093/mnras/stz2184

Links

Tools

Export citation

Search in Google Scholar

Broad-lined type Ic supernova iPTF16asu: A challenge to all popular models

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT It is well known that ordinary supernovae (SNe) are powered by 56Ni cascade decay. Broad-lined type Ic SNe (SNe Ic-BL) are a subclass of SNe that are not all exclusively powered by 56Ni decay. It was suggested that some SNe Ic-BL are powered by magnetar spin-down. iPTF16asu is a peculiar broad-lined type Ic supernova discovered by the intermediate Palomar Transient Factory. With a rest-frame rise time of only 4 d, iPTF16asu challenges the existing popular models, for example, the radioactive heating (56Ni-only) and the magnetar +56Ni models. Here we show that this rapid rise could be attributed to interaction between the SN ejecta and a pre-existing circumstellar medium ejected by the progenitor during its final stages of evolution, while the late-time light curve can be better explained by energy input from a rapidly spinning magnetar. This model is a natural extension to the previous magnetar model. The mass-loss rate of the progenitor and ejecta mass are consistent with a progenitor that experienced a common envelope evolution in a binary. An alternative model for the early rapid rise of the light curve is the cooling of a shock propagating into an extended envelope of the progenitor. It is difficult at this stage to tell which model (interaction+magnetar + 56Ni or cooling+magnetar + 56Ni) is better for iPTF16asu. However, it is worth noting that the inferred envelope mass in the cooling+magnetar + 56Ni is very high.

Beta version