Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S235(2), p. 210-210, 2006
DOI: 10.1017/s1743921306006168
Full text: Unavailable
AbstractSmoothed Particle Hydrodynamics (SPH) simulations are a powerful tool to investigate hydrodynamical processes in astrophysics such as the formation of galactic disks. Dense gas clouds raining on the forming disk are possibly disrupted by Kelvin-Helmholtz-Instabilities (KHI). To understand the evolution of the halo clouds, we have to ascertain the capability of SPH to treat the KHI correctly, since SPH-methods tend to suffer from an innate surface tension and viscosity effects, both of which could dampen the KHI. We analytically derive a growth rate of the KHI including surface tension and viscosity in the linear regime, and compare this growth rate to results of numerical simulations by an SPH method and a grid-based method. We find that SPH in some cases suppresses the KHI (Junk et al., in prep).