Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S235(2), p. 210-210, 2006

DOI: 10.1017/s1743921306006168

Links

Tools

Export citation

Search in Google Scholar

The Kelvin-Helmholtz Instability in Smoothed-Particle Hydrodynamics

Journal article published in 2006 by Veronika Junk, Fabian Heitsch, Thorsten Naab ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSmoothed Particle Hydrodynamics (SPH) simulations are a powerful tool to investigate hydrodynamical processes in astrophysics such as the formation of galactic disks. Dense gas clouds raining on the forming disk are possibly disrupted by Kelvin-Helmholtz-Instabilities (KHI). To understand the evolution of the halo clouds, we have to ascertain the capability of SPH to treat the KHI correctly, since SPH-methods tend to suffer from an innate surface tension and viscosity effects, both of which could dampen the KHI. We analytically derive a growth rate of the KHI including surface tension and viscosity in the linear regime, and compare this growth rate to results of numerical simulations by an SPH method and a grid-based method. We find that SPH in some cases suppresses the KHI (Junk et al., in prep).

Beta version