Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S312(10), p. 101-104, 2014

DOI: 10.1017/s1743921315007619

Links

Tools

Export citation

Search in Google Scholar

Resonant motions of supermassive black hole triples

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractTriple supermassive black holes (SMBH) can form during the hierarchical mergers of massive galaxies with an existing binary. Perturbations by a third black hole may accelerate the merging process of an inner binary, for example through the Kozai mechanism. We analyze the evolution of simulated hierarchical triple SMBHs in galactic centers, and find resonances in the evolution of the semi-major axis, the eccentricity and the inclination, for both the inner and the outer orbits of the triple system, which are not only Kozai like. Through resonant oscillations, SMBH can trigger a significant increase of the inner SMBH binary eccentricity shortening the merger timescale expected from gravitational wave (GW) emission. As hierarchical triple SMBHs may be frequent in massive galaxies, the influence of orbital resonances is of great importance to our understanding of black hole coalescence and gravitational wave detection. Although Kozai mechanism is believed to play an important role in this process, detailed studies on the pattern of these resonances is necessary.

Beta version