Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(491), p. 5682-5692, 2019
Full text: Unavailable
ABSTRACT The long-term Swift monitoring of ESO 243–49 HLX−1 provides an opportunity to investigate the detailed timing and spectral behaviour of this hyperluminous X-ray source. Swift has detected seven outbursts since 2009 mid-August. Using different dynamical timing algorithms, we confirm an increasing trend for the time intervals between outbursts, which is manifest in the delays between the latest outbursts. The X-ray spectra of HLX−1 in quiescence can be described with a single power-law model while the thermal component dominates the X-ray emission during outburst. There is only marginal evidence for photon index (or spectral hardness) changes between quiescent states with about 1σ deviation. With the updated temporal and spectral features, we re-examine different scenarios to explain the origin of the quasi-periodic modulation of HLX−1. A significantly increasing trend without obvious stochastic fluctuations on the time-scale of the detected quasi-period may not fully support an orbital period origin as might be due to mass transfer episodes from a donor star at periastron of an extremely eccentric orbit. The outburst profile seems to be consistent with the effect of tidal-induced-precession of an accretion disc or an oscillating wind scenario in the inner disc. Based on these models, we speculate that the true orbital period is much shorter than the detected quasi-periodicity.