Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(491), p. 1093-1103, 2019

DOI: 10.1093/mnras/stz2286

Links

Tools

Export citation

Search in Google Scholar

Ionizing the intergalactic medium by star clusters: the first empirical evidence

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present a VLT/X-Shooter spectroscopy of the Lyman continuum (LyC) emitting galaxy Ion2 at z = 3.2121 and compare it to that of the recently discovered strongly lensed LyC emitter at z = 2.37, known as the Sunburst arc. Three main results emerge from the X-Shooter spectrum: (a) the Ly α has three distinct peaks with the central one at the systemic redshift, indicating a ionized tunnel through which both Ly α and LyC radiation escape; (b) the large O32 oxygen index ([O iii] λλ4959, 5007/[O ii] λλ3727, 3729) of $9.18_{-1.32}^{+1.82}$ is compatible to those measured in local (z ∼0.4) LyC leakers; (c) there are narrow nebular high-ionization metal lines with σv < 20 km s−1, which confirms the presence of young hot, massive stars. The He iiλ1640 appears broad, consistent with a young stellar component including Wolf–Rayet stars. Similarly, the Sunburst LyC emitter shows a triple-peaked Ly α profile and from VLT/MUSE spectroscopy the presence of spectral features arising from young hot and massive stars. The strong lensing magnification, (μ > 20), suggests that this exceptional object is a gravitationally bound star cluster observed at a cosmological distance, with a stellar mass M ≲ 107 M⊙ and an effective radius smaller than 20 pc. Intriguingly, sources like Sunburst but without lensing magnification might appear as Ion2-like galaxies, in which unresolved massive star clusters dominate the ultraviolet emission. This work supports the idea that dense young star clusters can contribute to the ionization of the IGM through holes created by stellar feedback.

Beta version