Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S295(8), p. 137-140, 2012

DOI: 10.1017/s1743921313004523

Links

Tools

Export citation

Search in Google Scholar

Galaxy formation and evolution with the Dark Energy Survey

Journal article published in 2012 by Diego Capozzi, Daniel Thomas ORCID, Claudia Maraston, Luke J. M. Davies ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Dark Energy Survey (DES) will be the new state-of the-art in large-scale galaxy imaging surveys. With 5,000 deg2, it will cover an area of the sky similar to SDSS-II, but will go over two magnitudes deeper, reaching 24th magnitude in all four optical bands (griz). DES will further provide observations in the redder Y-band and will be complemented with VISTA observations in the near-infrared bands JHK. Hence DES will furnish an unprecedented combination of sky and wavelength coverage and depth, unreached by any of the existing galaxy surveys. The very nature of the DES data set – large volume at intermediate photometric depth – allows us to probe galaxy formation and evolution within a cosmic-time range of ~ 10 Gyr and in different environments. In fact there will be many galaxy clusters available for galaxy evolution studies, given that one of the main aims of DES is to use their abundance to constrain the equation of state of dark energy. The X-ray follow up of these clusters, coupled with the use of gravitational lensing, will provide very precise measures of their masses, enabling us to study in detail the influence of the environment on galaxy formation and evolution processes. DES will leverage the study of these processes by allowing us to perform a detailed investigation of the galaxy luminosity and stellar mass functions and of the relationship between dark and baryonic matter as described by the Halo Occupation Distribution.

Beta version