Astronomy & Astrophysics, (632), p. A9, 2019
DOI: 10.1051/0004-6361/201936550
Full text: Unavailable
Context. The upcoming new generation of optical spectrographs on four-meter-class telescopes, with their huge multiplexing capabilities, excellent spectral resolution, and unprecedented wavelength coverage, will provide invaluable information for reconstructing the history of star formation in individual galaxies up to redshifts of about 0.7. Aims. We aim at defining simple but robust and meaningful physical parameters that can be used to trace the coexistence of widely diverse stellar components: younger stellar populations superimposed on the bulk of older ones. Methods. We produced spectra of galaxies closely mimicking data from the forthcoming Stellar Populations at intermediate redshifts Survey (StePS), a survey that uses the WEAVE spectrograph on the William Herschel Telescope. First, we assessed our ability to reliably measure both ultraviolet and optical spectral indices in galaxies of different spectral types for typically expected signal-to-noise ratios. We then analyzed such mock spectra with a Bayesian approach, deriving the probability density function of r- and u-band light-weighted ages as well as of their difference. Results. We find that the ultraviolet indices significantly narrow the uncertainties in estimating the r- and u-band light-weighted ages and their difference in individual galaxies. These diagnostics, robustly retrievable for large galaxy samples even when observed at moderate signal-to-noise ratios, allow us to identify secondary episodes of star formation up to an age of ∼0.1 Gyr for stellar populations older than ∼1.5 Gyr, pushing up to an age of ∼1 Gyr for stellar populations older than ∼5 Gyr. Conclusions. The difference between r-band and u-band light-weighted ages is shown to be a powerful diagnostic to characterize and constrain extended star-formation histories and the presence of young stellar populations on top of older ones. This parameter can be used to explore the interplay between different galaxy star-formation histories and physical parameters such as galaxy mass, size, morphology, and environment.