European Geosciences Union, Atmospheric Chemistry and Physics, 23(15), p. 13377-13392, 2015
DOI: 10.5194/acp-15-13377-2015
Full text: Download
<p><strong>Abstract.</strong> Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO<sub>3</sub>) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO<sub>3</sub> to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO<sub>3</sub> radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C<sub>10</sub>H<sub>17</sub>NO<sub>5</sub>, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C<sub>5</sub>H<sub>9</sub>NO<sub>5</sub> was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NO<sub><I>y</I></sub> budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO<sub>3</sub> uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO<sub>3</sub> + BVOCs.</p>