Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(489), p. 2702-2722, 2019

DOI: 10.1093/mnras/stz2318

Links

Tools

Export citation

Search in Google Scholar

The impact of AGN on stellar kinematics and orbits in simulated massive galaxies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present a series of 10 × 2 cosmological zoom simulations of the formation of massive galaxies with and without a model for active galactic nucleus (AGN) feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit maps. The impact of the AGN is weak at high redshift when all systems are mostly fast rotating and disc-like. After z ∼ 1 the AGN simulations result in lower mass, older, less metal rich, and slower rotating systems with less discy isophotes – in general agreement with observations. 2D kinematic maps of in situ and accreted stars show that these differences result from reduced in-situ star formation due to AGN feedback. A full analysis of stellar orbits indicates that galaxies simulated with AGN are typically more triaxial and have higher fractions of x-tubes and box orbits and lower fractions of z-tubes. This trend can also be explained by reduced late in-situ star formation. We introduce a global parameter, ξ3, to characterize the anticorrelation between the third-order kinematic moment h3 and the line-of-sight velocity (Vavg/σ), and compare to ATLAS3D observations. The kinematic correlation parameter ξ3 might be a useful diagnostic for large integral field surveys as it is a kinematic indicator for intrinsic shape and orbital content.

Beta version