Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S267(5), p. 172-176, 2009
DOI: 10.1017/s1743921310006113
Full text: Unavailable
AbstractWe present results from infrared spectroscopic projects that aim to test the relation between the mass of a black hole MBH and the velocity dispersion of the stars in its host-galaxy bulge. We demonstrate that near-infrared, high-resolution spectroscopy assisted by adaptive optics is key in populating the high-luminosity end of the relation. We show that the velocity dispersions of mid-infrared, high-ionization lines originating from gas in the narrow-line region of the active galactic nucleus follow the same relation. This result provides a way of inferring MBH estimates for the cosmologically significant population of obscured, type 2 AGN that can be applicable to data from spectrographs on next-generation infrared telescopes.