Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S252(4), p. 405-411, 2008

DOI: 10.1017/s1743921308023326

Links

Tools

Export citation

Search in Google Scholar

Stellar radii from long-baseline interferometry

Journal article published in 2008 by Pierre Kervella
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractLong baseline interferometers now measure the angular diameters of nearby stars with sub-percent accuracy. They can be translated in photospheric radii when the parallax is known, thus creating a novel and powerful constraint for stellar models. I present applications of interferometric radius measurements to the modeling of main sequence stars. Over the last few years, we obtained accurate measurements of the linear radius of many of the nearest stars: Procyon A, 61 Cyg A & B, α Cen A & B, Sirius A, Proxima. . . Firstly, I describe the example of our modeling of Procyon A (F5IV-V) with the CESAM code, constrained using spectrophotometry, the linear radius, and asteroseismic frequencies. I also present our recent results on the low-mass 61 Cyg system (K5V+K7V), for which asteroseismic frequencies have not been detected yet.

Beta version