Links

Tools

Export citation

Search in Google Scholar

A Multi-Component System for Data Acquisition and Visualization in the Geosciences Based on Uavs, Augmented and Virtual Reality

Preprint published in 2018 by S. Bernardes, M. Madden, A. Knight, N. Neel, N. Morgan, K. Cameron, J. Knox
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In this age of computer gaming, portable device video and high definition entertainment, students are exposed to sophisticated graphics and virtual reality every day. As a result, students arrive at universities with a high level of expectation and experience in visualization and 3D graphics. Traditional materials for education and outreach rely predominantly on two-dimensional displays of maps, photographs, data graphs/histograms and conceptual diagrams. Advances in geospatial technologies, including unmanned aerial systems and virtual/ augmented reality devices can be used to enhance and innovate instructional materials in classrooms from pre-K to graduate degree programs. This work reports on these technologies and the integration of the 3D Immersion and Geovisualization (3DIG) system at the Center for Geospatial Research at the University of Georgia, USA. We present system components, lessons learned during design and implementation of the system, and the incorporation of 3DIG into teaching, learning and research. Data flow is used as a multi-component system integrator and shows how interconnected and complementary technologies can provide hands-on and immersive experiential learning to students in the geosciences. System evaluation shows increased student interest/engagement and indicates that 3DIG facilitates the understanding of complex concepts.

Beta version