Links

Tools

Export citation

Search in Google Scholar

Combined effects of altered N:P stoichometry and trees on Mediterranean savanna root dynamics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Mediterranean grasslands are highly seasonal and co-limited by water and nutrients. In such systems little is known about root dynamics which may depend on plant habit and environment as well seasonal water shortages and site fertility. This latter factor is affected by the presence of scattered trees and site management including grazing, as well as chronic nitrogen deposition, which may lead to N:P imbalance. In this study we combined observations from minirhizotrons collected in a Mediterranean tree-grass ecosystem (Spanish Dehesa), with root measurements from direct soil cores and ingrowth cores, and above-ground biomass to investigate seasonal root dynamics and root:shoot ratios. We investigated responses to soil fertility, using a nutrient manipulation (N / NP additions) and microhabitats effects between open pasture and under tree canopy locations. Root dynamics over time were compared with indices of above-ground growth drawn from proximal remote sensing (Normalised Difference Vegetation Index and Green Chromatic Coordinate derived from near-infrared enabled digital repeat photography). Results show distinct differences in root dynamics and biomass between treatments and microhabitats. Root biomass was higher with N additions, but not with NP additions in early spring, but by the end of the growing season root biomass had increased with NP in open pastures but not higher than N alone. In contrast, root length density (RLD) in pastures responded stronger to the NP than N only treatment, while beneath trees RLD tended to be higher with only N. Even though root biomass increased, root:shoot ratio decreased under nutrient treatments.We interpret these differences as a shift in community structure and/or root traits under changing stoichiometry and altered nutrient limitations. The timing of maximum root cover, as assessed by the minirhizotrons, did not match with above-ground phenology indicators at the site as root growth was low during autumn despite the greening up of the ecosystem. In other periods, roots responded quickly to rain events on the scale of days, matching changes in above-ground indices. Our results highlight the need for high resolution sampling to increase understanding of root dynamics in such systems, linkage with shifts in community structure and traits, and targeting of appropriate periods of the year for in-depth campaigns.

Beta version