Links

Tools

Export citation

Search in Google Scholar

Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In the Arctic Ocean, increased sea surface temperature and sea ice retreat have triggered shifts in phytoplankton communities. In Fram Strait, coccolithophorids have been occasionally observed to replace diatoms as the dominating taxon of spring blooms. Deep-sea benthic communities depend strongly on such blooms but with a change in quality and quantity of primarily produced organic matter [OM] input, this may likely have implications for deep-sea life. We compared the in situ responses of Arctic deep-sea benthos to input of phytodetritus from a diatom ( Thalassiosira sp.) and a coccolithophorid ( Emiliania huxleyi ) species. We traced the fate of 13 C and 15 N labelled phytodetritus into respiration, assimilation by bacteria and infauna in a 4 d and 14 d experiment. Bacteria were key assimilators in the Thalassiosira OM degradation whereas Foraminifera and other infauna were at least as important as bacteria in the Emiliania OM assimilation. After 14 d, 5 times less carbon and 3.8 times less nitrogen of the Emiliania detritus was recycled compared to Thalassiosira detritus. This implies that the utilization of Emiliania OM may be less efficient than for Thalassiosira OM. Our results indicate that a shift from diatom-dominated input to a coccolithophorid-dominated pulse could entail a delay in OM cycling, which may affect bentho-pelagic coupling.

Beta version