Links

Tools

Export citation

Search in Google Scholar

An Improved Total and Tropospheric NO2 Column Retrieval for GOME-2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

An improved algorithm for the retrieval of total and tropospheric nitrogen dioxide (NO 2 ) columns from the Global Ozone Monitoring Experiment-2 (GOME-2) is presented. The refined retrieval will be implemented in a future version of the GOME Data Processor (GDP) as used by the EUMETSAT Satellite Application Facility on Atmospheric Composition and UV Radiation (AC-SAF). The first main improvement is the application of an extended 425–497 nm wavelength fitting window in the differential optical absorption spectroscopy (DOAS) retrieval of the NO 2 slant column density. Updated absorption cross-sections and a linear offset correction are used for the large fitting window. An improved slit function treatment is applied to compensate for both long-term and in-orbit drift of the GOME-2 slit function. Compared to the current operational (GDP 4.8) dataset, the use of these new features increases the NO 2 columns by 1–3 × 10 14 molec/cm 2 and reduces the slant column error by ∼ 24 %. In addition, the bias between GOME-2A and GOME-2B measurements is largely reduced by adopting a new level 1b data version in the DOAS retrieval. The retrieved NO 2 slant columns show good consistency with the Quality Assurance for Essential Climate Variables (QA4ECV) retrieval with a good overall quality. Second, the STRatospheric Estimation Algorithm from Mainz (STREAM), which was originally developed for the TROPOspheric Monitoring Instrument (TROPOMI) instrument, was optimized for GOME-2 measurements to determine the stratospheric NO 2 column density. Applied to synthetic GOME-2 data, the estimated stratospheric NO 2 columns from STREAM shows a good agreement with the a priori truth. An improved latitudinal correction is introduced in STREAM to reduce the biases over the subtropics. Applied to GOME-2 measurements, STREAM largely reduces the overestimation of stratospheric NO 2 columns over polluted regions in the GDP 4.8 dataset. Third, the calculation of AMF applies an updated box-air mass factor (box-AMF) look-up table (LUT) calculated using the latest version of VLIDORT model with an increased number of reference points and vertical layers, a new GOME-2 surface albedo climatology, improved a priori NO 2 profiles obtained from the TM5-MP chemistry transport model, and improved GOME-2 cloud parameters. A large effect on the retrieved tropospheric NO 2 columns (more than 10 %) is found over polluted regions. To evaluate the GOME-2 tropospheric NO 2 columns, an end-to-end validation is performed using ground-based multiple-axis DOAS (MAXDOAS) measurements. The validation is illustrated for 6 stations covering urban, suburban, and background situations. Compared to the GDP 4.8 product, the new dataset presents an improved agreement with the MAXDOAS measurements for all the stations.

Beta version