Links

Tools

Export citation

Search in Google Scholar

On sampling bias adjustment for sparsely observing satellite instruments for the example of carbonyl sulfide (OCS)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

When computing climatological averages of atmospheric trace gas mixing ratios obtained from satellite-based measurements, sampling biases arise if data coverage is not uniform in space and time. Complete homogeneous spatio-temporal coverage is essentially impossible to achieve. Solar occultation measurements, by virtue of satellite orbits and the requirement of direct observation of the sun through the atmosphere, result in particularly sparse spatial coverage. In this study, a method is presented to adjust for such sampling biases when calculating climatological means. The method is demonstrated using carbonyl sulfide (OCS) measurements at 16 km altitude from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform 15 Spectrometer). At this altitude, OCS mixing ratios show a steep gradient between the poles and equator. ACE-FTS measurements, which are provided as vertically resolved profiles, and integrated stratospheric OCS columns are used in this study. The bias adjustment procedure requires no additional observations other than the satellite data product itself and is expected to be generally applicable when constructing climatologies of long-lived tracers from sparsely and heterogeneously sampled satellite data. In a first step of the adjustment procedure, a regression model is used to fit a 2-D surface to all available ACE-FTS OCS measurements as a function of day-of-year and latitude. The regression model fit is used to calculate an adjustment factor, 20 which is then used to adjust each measurement individually. The mean of the adjusted measurement points of a chosen spatio-temporal frame is then used as the bias-free climatological value. When applying the adjustment factor to seasonal averages in 30° zones, the maximum spatio-temporal sampling bias adjustment was 11 % for OCS mixing ratios at 16 km and 5 % for the stratospheric OCS column. The adjustments were validated against the much denser and more homogeneous OCS data product from the limb-sounding MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument, and both the direction and sign of the adjustments were in agreement with the adjustment of the ACE-FTS data.

Beta version