Links

Tools

Export citation

Search in Google Scholar

Contribution of sea-ice albedo and insulation effects to Arctic amplification in the EC-Earth Pliocene simulation

Preprint published in 2018 by Jianqiu Zheng, Qiong Zhang, Qiang Li, Qiang Zhang, Ming Cai
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In the present work, we simulate the Pliocene climate with EC-Earth climate model as an analogue for current warming climate induced by massive CO 2 in the atmosphere. The simulated Pliocene climate shows a strong Arctic amplification featured by pronounced warming sea surface temperature (SST) over North Atlantic in particular over Greenland Sea and Baffin Bays, which is comparable with geological SST reconstructions from PRISM. To understand the underlying physical processes, the air-sea heat flux variation in response to Arctic sea-ice change is quantitatively assessed by a climate feedback and response analysis method (CFRAM) and an equilibrium feedback assessment (EFA)-like approach. Giving the facts that the maximum warming in SST occurs in summer while the maximum warming in surface air temperature happens during winter, our analyses show that dominant ice-albedo effect is the main reason for summer SST warming, a 1 % loss in sea-ice concentration could lead to an approximate 2 W m-2 increase in shortwave solar radiation into open sea surface. During winter month, the insulation effect induces enhanced turbulent heat flux out of sea surface due to sea-ice melting in previous summer months. This leads to more heat release from the ocean to atmosphere, thus explaining the stronger surface air temperature warming amplification in winter than in summer.

Beta version