Links

Tools

Export citation

Search in Google Scholar

Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Hydrological extremes, floods and droughts, cause significant economic damages and pose risks to lives worldwide. In an increasing hydro-climatic risk context as a result of climate change, this work identifies future hot-spots across Great Britain expected to be impacted by an increase in both floods and droughts. First, flood and drought hazards were defined and selected in a consistent and parallel approach with a threshold method. Then, a nation-wide systematic and robust statistical framework was developed to quantify changes in frequency, magnitude, and duration, and assess time of year for both droughts and floods, and the uncertainty associated with climate model projections. This approach was applied to a spatially-coherent statistical database of daily river flows (Future Flows Hydrology) across Great Britain to assess changes between the baseline (1961–1990) and the 2080s (2069–2098). The results showed that hydro-hazard hot-spots are likely to develop along the west coast of England and Wales and across northeast Scotland, mainly during the winter (floods) and autumn (droughts) seasons, with a higher increase in drought hazard in terms of magnitude and duration. These results suggest a need for adapting water management policies in light of climate change impact, not only on the magnitude, but also on the timing of hydro-hazard events, and future policy should account for both extremes together, alongside their potential future evolution. This novel, consistent, method is transferable to new hydro-climatic projection databases.

Beta version