Links

Tools

Export citation

Search in Google Scholar

Aerosol Optical Depth retrievals in Central Amazonia from a Multi-Filter Rotating Shadow-band Radiometer on-site calibrated

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Extraterrestrial spectral response calibration of a Multi-Filter Rotating Shadow band Radiometer (MFRSR) under Amazonian Forest atmosphere pristine conditions using the Langley plot method was performed and evaluated. The MFRSR is installed in central Amazonia as part of a long-term monitoring site, which was used in the context of the GoAmazon2014/5 Experiment. It has been operating continuously since 2011 without regular extraterrestrial calibration, preventing its application to accurate monitoring of aerosol particles. Once calibrated, the MFRSR measurements were applied to retrieve aerosols particles columnar optical properties, specifically Aerosol Optical Depth (AOD λ ) and Ångström Exponent (AE), which were evaluated against retrievals from a collocated CIMEL sunphotometer belonging to the AErosol RObotic NETwork (AERONET). Results obtained revealed that Amazonian pristine conditions are able to provide MFRSR extraterrestrial spectral response with relative uncertainty lower than 1.0 % at visible channels. The worst estimate (air mass = 1) for absolute uncertainty in AOD λ retrieval varied from ~ 0.02 to ~ 0.03, depending on the assumption regarding uncertainty for MFRSR direct-normal irradiance measured at the surface. Obtained Root Mean Square Errors (RMSE ~ 0.025) from the evaluation of MFRSR retrievals against AERONET AOD λ were, in general, lower than estimate MFRSR AOD λ uncertainties, and close to AERONET field sunphotometers (~ 0.02).

Beta version