Links

Tools

Export citation

Search in Google Scholar

Retrievals of Tropospheric Ozone Profiles from the Synergic Observation of AIRS and OMI: Methodology and Validation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The Tropospheric Emission Spectrometer (TES) on the A-Train Aura satellite was designed to profile tropospheric ozone and its precursors, taking measurements from 2004 to 2018. Starting in 2008, TES global sampling of tropospheric ozone was gradually reduced in latitude with global coverage stopping in 2011. To extend the record of TES, this work presents a multispectral approach that will provide O 3 data products with vertical resolution and measurement uncertainty similar to TES by combining the single-footprint thermal infrared (TIR) hyperspectral radiances from the Aqua Atmospheric Infrared Sounder (AIRS) instrument and the ultraviolet (UV) channels from the Aura Ozone Monitoring Instrument (OMI). The joint AIR+OMI O 3 retrievals are processed through the MUlti-SpEctra, MUlti-SpEcies, MUlti-SEnsors (MUSES) retrieval algorithm. Comparisons of collocated joint AIRS+OMI and TES to ozonesonde measurements show that both systems have similar errors, with mean and standard deviation of the differences well within the estimated measurement uncertainty. AIRS+OMI and TES have slightly different biases (within 5 parts per billion) versus the sondes. Both AIRS and OMI have wide swath widths (~ 1,650 km for AIRS; ~ 2,600 km for OMI) across satellite ground tracks. Consequently, the joint AIRS+OMI measurements have the potential to maintain TES vertical sensitivity while increasing coverage by two orders of magnitude, thus providing an unprecedented new dataset to quantify the evolution of tropospheric ozone.

Beta version