Links

Tools

Export citation

Search in Google Scholar

Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The aim of this paper is to analyze the suitability of the high-mountain stations Mauna Loa and Izaña for Langley plot calibration of Sun photometers. Thus the aerosol optical depth (AOD) characteristics and seasonality, as well as the cloudiness, have been investigated in order to provide a robust estimation of the calibration accuracy, as well as the number of days that are suitable for Langley calibrations. The data used for the investigations belong to AERONET and GAW-PFR networks, which maintain reference Sun photometers at these stations with long measurement records: 22 years at Mauna Loa and 15 years at Izaña. In terms of clear sky and stable aerosol conditions, Mauna Loa (3397 m a.s.l.) exhibits on average of 377 Langleys (243 morning and 134 afternoon) per year suitable for Langley plot calibration, whereas Izaña (2373 m a.s.l.) shows 343 Langleys (187 morning and 155 afternoon) per year. The background AOD (500 nm wavelength) values, on days that are favorable for Langley calibrations, are in the range 0.01–0.02 throughout the year, with well-defined seasonality that exhibits a spring maximum at both stations plus a slight summer increase at Izaña. The statistical analysis of the long-term determination of extraterrestrial signals yields to a calibration uncertainty of ~ 0.2–0.5 %, being this uncertainty smaller in the near infrared and larger in the ultraviolet wavelengths. This is due to atmospheric variability that cannot be reduced based only on quality criteria of individual Langely plots.

Beta version