Links

Tools

Export citation

Search in Google Scholar

Topological Data Analysis and Machine Learning for Recognizing Atmospheric River Patterns in Large Climate Datasets

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Identifying weather patterns that frequently lead to extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Here we propose an automated method for recognizing atmospheric rivers (ARs) in climate data using topological data analysis and machine learning. The method provides useful information about topological features (shape characteristics) and statistics of ARs. We illustrate this method by applying it to outputs of 5 version 5.1 of the Community Atmosphere Model (CAM5.1) and reanalysis product of the second Modern-Era Retrospective Analysis for Research & Applications (MERRA-2). An advantage of the proposed method is that it is threshold-free. Hence this method may be useful in evaluating model biases in calculating AR statistics. Further, the method can be applied to different climate scenarios without tuning since it does not rely on threshold conditions. We show that the method is suitable for rapidly analyzing large amounts of climate model and reanalysis output data.

Beta version